Matrix Multiplication
Published on November 6, 2024
The multiplication of the two given matrices results in a 2x3 matrix with entries calculated by multiplying corresponding rows and columns of the matrices and summing the products.
Published on November 6, 2024
The multiplication of the two given matrices results in a 2x3 matrix with entries calculated by multiplying corresponding rows and columns of the matrices and summing the products.
The equation x^x + 6/x = 7 has two solutions, x = 1 and x = 2, as demonstrated by direct substitution.
The solution to the equation 3^(x+2) = 2^(x+3) is found by taking the natural logarithm of both sides, applying logarithm properties, isolating x, and simplifying to an expression involving natural logarithms of 2 and 3. The approximate value of x is then calculated.
The expression $((i+1)(i-1))^2$ simplifies to 4.
The equation 3^(x^2)/9^x = 81 is solved by rewriting the equation with the same base, simplifying the denominator, applying the quotient rule for exponents, equating the exponents, rearranging into a quadratic equation, and finally using the quadratic formula to find the two solutions, x = 1 + √5 and x = 1 - √5.
The equation x^2 + 3x + 7 = 6/(x^2 + 3x + 2) is solved by substituting u = x^2 + 3x, resulting in a quadratic equation in u. Factoring the quadratic equation yields two possible values for u, which are then substituted back into the substitution to find the solutions for x using the quadratic formula. One case results in two real solutions, while the other yields no real solutions.
The solution to the equation \sqrt{7 + \frac{3}{\sqrt{x}}} = 7 - \frac{9}{x} is x = \frac{9}{4}.
The solution involves finding an expression for X_n, a sum of reciprocals of powers of x, using the formula for a finite geometric series. Then, the expression for x^n is used to simplify the ratio x^n / X_n, ultimately resulting in x^(n+1).
The solution demonstrates how to find the value of RS by expanding the second equation, substituting the first equation, and simplifying the resulting equation.
To solve the equation 16/x = x^2/4, cross-multiply to get 64 = x^3, then take the cube root of both sides to find x = 4.
The solution to the equation (1/3)^(x+3) = 9^x is x = -1.